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Abstract

Time series forecasting plays a pivotal role in critical domains such as energy man-1

agement and financial markets. Although deep learning-based approaches (e.g.,2

MLP, RNN, Transformer) have achieved remarkable progress, the prevailing "long-3

sequence information gain hypothesis" exhibits inherent limitations. Through4

systematic experimentation, this study reveals a counterintuitive phenomenon:5

appropriately truncating historical data can paradoxically enhance prediction ac-6

curacy, indicating that existing models learn substantial redundant features (e.g.,7

noise or irrelevant fluctuations) during training, thereby compromising effective8

signal extraction. Building upon information bottleneck theory, we propose an9

innovative solution termed Adaptive Masking Loss with Representation Consis-10

tency (AMRC), which features two core components: 1) Dynamic masking loss,11

which adaptively identified highly discriminative temporal segments to guide gra-12

dient descent during model training; 2) Representation consistency constraint,13

which stabilized the mapping relationships among inputs, labels, and predictions.14

Experimental results demonstrate that AMRC effectively suppresses redundant15

feature learning while significantly improving model performance. This work16

not only challenges conventional assumptions in temporal modeling but also pro-17

vides novel theoretical insights and methodological breakthroughs for developing18

efficient and robust forecasting models. We have made our code available at19

https://anonymous.4open.science/r/AMRC/.20

1 Introduction21

Time series forecasting, as a pivotal technology in critical domains such as energy management22

and financial markets, directly influences decision-making quality and economic efficiency [11,23

18, 12, 19, 22]. Recent breakthroughs in deep learning have driven revolutionary advancements in24

time series prediction. Contemporary frameworks including Multilayer Perceptron (MLP)-based25

architectures [17, 30, 7, 27, 4, 28], Recurrent Neural Networks (RNNs) with their variants [13, 21, 9],26

and attention mechanism-based models exemplified by the Transformer [20, 33, 32, 16, 34, 2, 6], have27

achieved remarkable breakthroughs in modeling complex temporal patterns through the construction28

of elaborate hierarchical temporal dependencies.29

Current mainstream forecasting models predominantly adhere to the "long-sequence information gain30

hypothesis," which posits that extending historical data length enhances the availability of temporal31

dependencies [31, 15]. However, through systematic experimental analysis, this study challenges32

this conventional assumption. As shown in Table 1, we observed a counterintuitive phenomenon33

across multiple benchmark datasets and diverse model architectures: appropriately truncating early34

segments of input sequences can significantly improve prediction accuracy. This finding reveals a35
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critical issue in modern predictive models: during training, models inadvertently capture a substantial36

number of redundant features. These features not only fail to enhance performance but also interfere37

with the learning process, thereby limiting the models’ potential to achieve optimal results.38

Through systematic analysis, we have identified two typical manifestations of redundant features and39

their underlying mechanisms. First, input truncation optimization experiments (as shown in Figure40

2b and Table 1) demonstrate that selectively masking partial historical data can significantly improve41

model prediction performance. This phenomenon reveals the current model’s inefficient utilization42

of long historical windows. Second, representation similarity analysis (as illustrated in Figure 2a)43

shows that both the model’s prediction results and intermediate embeddings exhibit an abnormally44

concentrated distribution, which significantly deviates from the natural dispersion characteristics45

of the input and label. Collectively, these observations indicate that existing models exhibit low46

efficiency when processing long historical windows, often encoding substantial noise or irrelevant47

variables rather than truly predictive signals.48

Building upon information bottleneck theory [24, 25, 23, 10], this study proposes an innovative49

method called Adaptive Masking Loss with Representation Consistency (AMRC). The core method-50

ology comprises: 1) An adaptive masking mechanism that dynamically identifies key segments with51

high discriminative power in sequential data and leverages these informative segments to guide the52

gradient optimization process (as illustrated in Fig 3) ; 2) A representation consistency constraint that53

establishes stable mapping relationships among the input feature space, label space, and predicted54

outputs, thereby effectively enhancing the model’s generalization capability. Experimental results (as55

shown in Table 2) demonstrate that the AMRC method significantly reduces the complexity of the56

training solution space by suppressing the model’s reliance on redundant features, fully exploits the57

performance potential of the model architecture, and consequently improves prediction accuracy.58

The primary contributions of this study include:59

• Theoretical Insight: Through rigorous experimental validation, We demonstrate that existing time60

series forecasting models are prone to learning redundant features, which in turn constrain their61

performance. Building on the theory of information bottlenecks, we construct a novel theoretical62

framework for time series modeling and propose an innovative optimization pathway, offering a63

new theoretical perspective for advancing the field of time series forecasting.64

• Methodological Innovation: We propose an optimization framework Adaptive Masking Loss with65

Representation Consistency. By dynamically selecting discriminative temporal segments to guide66

gradient descent (as illustrated in Figure 1) while enforcing input-label-prediction consistency,67

our method effectively suppresses redundant feature learning. Extensive experiments demonstrate68

consistent performance gains across diverse benchmarks and architectures.69

Our work advances the understanding of temporal pattern learning mechanisms while offering a70

practical pathway to enhance the efficiency and reliability of time series forecasting systems.71

2 Analysis of Redundant Feature Learning72

Given a multivariate time series X ∈ RT×D, where T is the number of timesteps and D is the73

number of variables, the objective of time series forecasting is to learn a mapping function fθ that74

transforms historical observations Xt−L:t ∈ RL×D (where L denotes the input length ) into future75

values Xt+1:t+H ∈ RH×D (where H represents the forecasting horizon).76

Conventional time series forecasting models follow the long-sequence information gain hypothesis[3,77

33, 5, 29], which holds that increasing the input length L improves forecasting accuracy. However,78

our experiments (Table 1) on multiple standard benchmarks reveal a counterintuitive result: truncating79

the input—such as masking the first k timesteps—often improves forecasting performance, which is80

measured by Mean Squared Error (MSE). We found that models tend to learn redundant features,81

which degrade model performance even after convergence. This finding is supported by two key82

observations:83

2.1 Input Truncation Optimization84

Based on the baseline model configuration (input length L = 48, forecasting horizon H = 48), we85

design an input truncation comparative experiment by applying a masking operatorMk(·) to the86
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Figure 1: Illustration of the effect of AMRC method. Without regularization, the model tends to
overfit redundant input features, leading to suboptimal convergence. By suppressing redundant input
features, AMRC restructures the optimization landscape, promoting more efficient representation
learning and facilitating better convergence.

input sequence. When we have an input sequence of length L at time step t, denoted as X(L)
t , the87

masking operatorMk(·) is mathematically defined as:88

Mk(X
(L)
t ) =

{
0 if i ≤ k

X
(L)
t otherwise

(1)

Here, k ∈ {1, . . . , L} denotes the masking step size.89

To probe redundant features, we employ an Optimal Masking strategy: Given an input sequence of90

length L, we generate L masked variants {Mk(X
(L)
t )}Lk=1 (zero-padded to preserve dimensionality).91

For instance, k = 5 yields L′ = 43 (first 5 positions zeroed). The optimal mask length k∗ is selected92

as the configuration minimizing MSE, thereby defining the theoretical upper bound for redundancy93

elimination:94

k∗ = argmin
k∈{1,2,...,L}

E
[∥∥∥fθ(Mk(X

(L)
t )

)
− Y

(H)
t

∥∥∥2] (2)

Table 1: Performance Gains via Optimal Masking Across Time Series Models. Ratio quantifies the
percentage of training samples demonstrating prediction error reduction through Optimal Masking,
calculated as number of masked series/number of total series ×100%

.
Model ETTh1 ETTh2 Solar-Energy Weather

Metric MSE MSE* Ratio MSE MSE* Ratio MSE MSE* Ratio MSE MSE* Ratio

SOFTS Train Set 0.278 0.254 56.54% 0.318 0.259 61.65% 0.182 0.155 11.80% 0.421 0.400 45.10%
Test Set 0.408 0.365 64.24% 0.326 0.303 28.73% 0.293 0.184 41.58% 0.205 0.185 54.93%

iTransformer Train Set 0.298 0.270 57.87% 0.315 0.261 64.19% 0.410 0.281 61.97% 0.436 0.389 62.98%
Test Set 0.413 0.289 60.07% 0.329 0.299 32.16% 0.395 0.271 68.43% 0.209 0.170 80.26%

PatchTST Train Set 0.343 0.303 65.57% 0.329 0.269 69.35% 0.366 0.277 35.89% 0.227 0.180 45.55%
Test Set 0.424 0.402 65.51% 0.327 0.298 42.46% 0.374 0.344 51.66% 0.215 0.180 42.43%

TSMixer Train Set 0.372 0.342 55.79% 0.544 0.431 73.96% 0.233 0.195 26.30% 0.363 0.348 37.57%
Test Set 0.402 0.372 59.19% 0.324 0.289 42.13% 0.288 0.250 40.12% 0.222 0.195 70.88%

TimeMixer Train Set 0.290 0.262 57.96% 0.309 0.251 59.36% 0.142 0.112 13.58% 0.403 0.353 63.93%
Test Set 0.393 0.366 58.04% 0.318 0.285 44.52% 0.288 0.253 36.25% 0.197 0.172 66.13%

As demonstrated in Table 1, the experimental results confirm that masked models consistently95

achieve lower MSE, with more than 50% of samples exhibiting improved predictive performance96

(Ratio > 50%). Notably, the phenomenon of redundancy learning shows strong architecture-agnostic97

characteristics. On the Weather dataset, both iTransformer (a Transformer-based model) and TSMixer98

(an MLP-based model) demonstrate similar relative improvements: iTransformer achieves an MSE99

reduction from 0.209 to 0.170 (−18.7%), while TSMixer improves from 0.222 to 0.195 (−12.2%).100

These results indicate that the effectiveness of our masking strategy is not dependent on specific101

model architectures.102
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2.2 Representation Similarity Paradox103

To further investigate the redundant feature learning phenomenon, we apply t-SNE to project the104

SOFTS model’s high-dimensional representations of the input, embedding, prediction, and label onto105

a 2D plane (Fig. 2a), after normalizing all features to the [0, 1] range.106

As illustrated in Fig.2a, Normalized input (Zin ∈ RL) and output (Zout ∈ RH ) embeddings show107

a clear contrast: inputs remain dispersed, while embeddings and preds cluster tightly despite large108

differences in their corresponding labels. This suggests that the model encodes redundant, task-109

irrelevant features that misrepresent semantic relationships and distort the input-output mapping.110

(a) Normalized t-SNE Projections of Input, Embedding, Prediction, and Label

(b) Masked vs. Unmasked Prediction Performance

Figure 2: Embedding Distributions and Masking Effects of Our Method.

2.3 Information Bottleneck Constraints on Redundancy111

According to the Information Bottleneck (IB) Theory [23], a neural network functions like a bottleneck112

that compresses input information during feature extraction. It discards irrelevant or noisy details and113

retains only the components most relevant to the overall task. For a time series forecasting model, let114

the input be denoted by X , the latent representation by Z, and the prediction target by Y . The model115

aims to learn a representation Z that maximally preserves information relevant to Y . This objective116

can be formally expressed as maximizing the mutual information between Z and Y :117

I(Z, Y ;θ) =

∫
dx dy p(z, y | θ) log p(z, y | θ)

p(z | θ)p(y | θ)
. (3)

Due to inherent limitations in the data and model capacity, the amount of information that can be118

extracted and transmitted during training is bounded. Consequently, the representation capacity is119

subject to an upper information constraint Ic. Based on this, the objective of the time series prediction120

model can be equivalently formulated as the following constrained optimization problem:121

max
θ

I(Z, Y ;θ) s.t. I(X,Z;θ) ≤ Ic. (4)

This constrained optimization problem can be transformed into an unconstrained form using the122

method of Lagrange multipliers, leading to the maximization of the following objective[1]:123

RIB(θ) = I(Z;Y ;θ)− βI(Z;X ;θ). (5)
There are two implementation paths under this objective: one is to maximize the mutual information124

I(Z;Y ) between Z and Y ; the other is to minimize the mutual information I(Z;X) between Z and X .125

Most current sequential prediction models focus on improving I(Z;Y ) through iterative training, but126

have not explicitly optimized performance by penalizing redundant features via minimizing I(Z;X).127

Therefore, we propose an adaptive loss function that aims to minimize the mutual information128

between X and Z, offering a novel optimization path for improving the performance of sequential129

prediction models.130
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Figure 3: Overview of the Adaptive Masking Loss (AML) framework. The upper half illustrates
how the optimal mask length K∗ is selected by evaluating prediction losses over sampled masks. A
weighting coefficient β is computed based on the gain over the unmasked loss. The lower half shows
the AML loss, calculated as the sum of representation differences between the original input and the
K∗ masked input across embedding, backbone, and predictor layers.

3 Proposed Method131

3.1 Adaptive Masking Loss (AML)132

As discussed in Section 2.1, applying ideal masking to input data reduces the information I(X) while133

improving prediction accuracy. This indicates that the representation Zk∗ , generated by encoder pθ134

from masked features Xt,k∗ , contains less redundancy and better approximates the minimal sufficient135

statistics (i.e., with smaller I(X,Zk∗ ; θ)). Based on this insight, we propose the Adaptive Masking136

Loss (AML) to explicitly reduce mutual information I(X,Z; θ) by guiding the encoder’s output137

representation Z toward Zk∗ , thereby suppressing redundant feature learning and unleashing model138

potential. The overall framework of AML is illustrated in Figure 3.139

3.1.1 Implementation140

The exhaustive search for optimal mask k∗ by enumerating all possible mask lengths k ∈ {1, ..., L}141

results in prohibitive O(L) time complexity for long sequences. We therefore adopt an efficient142

stochastic approximation strategy:143

1. Random Mask Generation: Independently sample m mask indices {ks}ms=1 from uniform144

distribution d(k) = Uniform{1, ..., L}, each generating a masked variant:145

X̃
(L)
t,s =Mks

(X
(L)
t ) (6)

2. Loss Evaluation: Compute prediction losses for both masked and original data:146

ℓs = L(fθ(X̃(L)
t,s ), Y

(H)
t ) (7)

ℓ = L(fθ(X(L)
t ), Y

(H)
t ) (8)

3. Optimal Representation Selection: If ∃ℓs < ℓ, the corresponding representation Z̃s = pθ(X̃
(L)
t,s )147

satisfies I(X
(L)
t , Z̃s) < I(X

(L)
t , Z), where Z = pθ(X

(L)
t ) is the original representation. The148

optimal mask variant is selected by:149

s∗ = argmax
s

(ℓ− ℓs) (9)
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3.1.2 Loss Formulation150

To promote compact and informative representations, AML minimizes the distance between the151

original representation Z and the optimal masked variant Z̃s∗ :152

LAML = β · 1

D1 ×D2
∥Z − Z̃s∗∥2 (10)

where the adaptive weight β = max(0, (ℓ− ℓs∗)/ℓ) dynamically scales the optimization intensity,153

ensuring stronger influence from mask variants with greater loss reduction.154

3.2 Embedding Similarity Penalty (ESP)155

Time series forecasting models often encounter two issues: semantic inconsistency, where seman-156

tically similar inputs lead to substantially different predictions, and representation collapse, where157

dissimilar inputs result in nearly identical outputs. Both problems reduce the robustness and gener-158

alization ability of the model. To address these issues, we introduce a regularization strategy that159

compares, for each pair of samples within a mini-batch, the geometry of the embedding space with160

that of the output space.161

Pairwise distances. For a batch B = {(Xi, Yi)}ni=1 we denote by Zi = fenc(Xi) ∈ RL×D the162

encoder output and keep the ground-truth Yi∈RP×D. The (normalised) squared Frobenius distances163

are164

∆E
ij =

1

L×D
∥Zi − Zj∥2F , ∆O

ij =
1

P ×D
∥Yi − Yj∥2F , 1≤ i, j≤ n. (11)

Consistency penalty. Ideally ∆E
ij and ∆O

ij should match: semantically similar inputs (∆E
ij ≈ 0)165

ought to produce similar outputs (∆O
ij ≈ 0), and vice versa. Deviation is quantified element-wise166

through167

Pij = ReLU
(
∆E

ij −∆O
ij

)
+ReLU

(
∆O

ij −∆E
ij

)
= |∆E

ij −∆O
ij |+, (12)

where ReLU(x) = max(0, x) and | · |+ denotes the non-negative part. The Embedding-Similarity168

Penalty then reads169

LESP =
1

n2

n∑
i=1

n∑
j=1

Pij . (13)

Equation (13) back-propagates smooth, unbiased gradients that jointly reshape the encoder and the170

predictor so that input and output manifolds remain geometrically aligned. The detailed implementa-171

tion of the Embedding Similarity Penalty (ESP) is provided as pseudocode in Appendix D.172

3.3 Overall Training Objective173

Section 3.1 introduced the Adaptive Masking Loss LAML that discourages the learning of redundant174

temporal prefixes, while Section 3.2 proposed the Embedding-Similarity Penalty LESP to enforce175

semantic–behavioural consistency. Combined with the standard prediction loss Lpred (e.g., MSE176

between the forecast Ŷ and the target Y ), our final objective is177

Ltotal = Lpred + λAML LAML + λESP LESP, (14)
where λAML, λESP > 0 control the strength of each auxiliary term. Minimizing (14) jointly (i)178

identifies the informative prefix for every sequence, (ii) preserves the intrinsic topology of the data,179

and (iii) improves predictive accuracy and interpretability without adding inference-time overhead.180

4 Experiment181

4.1 Experiment Setup182

Datasets. We evaluate our proposed method using seven widely recognized benchmark datasets for183

multivariate time series forecasting: ETTh1, ETTh2, ETTm1, ETTm2, Solar-Energy, Electricity,184

and Weather. These datasets encompass a variety of application scenarios with different temporal185

resolutions, seasonality patterns, and dynamic structures. Detailed descriptions of each dataset,186

including their specific characteristics and collection periods, are provided in the appendix F.187
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Task formulation. In our experimental setup, the forecasting task is formulated as a sequence-to-188

sequence regression problem, applicable to multivariate time series. Each model is trained to predict189

a future sequence Y
(H)
t ∈ RH×D from a fixed-length historical input sequence X

(48)
t ∈ R48×D,190

where H denotes the prediction length and D is the number of variables. We adopt multiple prediction191

horizons H ∈ {48, 72, 96, 120, 144, 168, 192}.192

Baselines. Our method is compared against five diverse baseline models: SOFTS [8], iTransformer193

[14], PatchTST [16], TSMixer [7], and TimeMixer [26]. These baselines are implemented us-194

ing their official codebases and recommended hyperparameters to ensure a fair comparison under195

consistent experimental conditions.196

Implementation details. All models are implemented in PyTorch and trained on a single NVIDIA197

A100 80GB GPU. To ensure a fair comparison and allow both baseline models and those augmented198

with our proposed modules to fully exploit their capacity, we train each model for up to 100 epochs199

using the Adam optimizer with an initial learning rate of 1× 10−4, a cosine annealing scheduler, and200

a batch size of 32. Early stopping is applied based on validation loss with a patience of 20 epochs.201

The best-performing checkpoint on the validation set is selected for final evaluation on the test set.202

Hyperparameter selection. For the AML, the input sequence prefix length is configured as L = 48,203

with the mask sampling cardinality parameterized as m = 12. We fix both λAML and λESP to 1 for204

all experiments. These settings follow standard benchmark configurations commonly used in time205

series forecasting.206

4.2 Forecasting Results207

We present the forecasting performance of our method—Adaptive Masking Loss with Representation208

Consistency (AMRC)—in comparison with five representative baseline models across seven widely209

used time series benchmark datasets. Table 2 reports the Mean Squared Error (MSE) and Mean210

Absolute Error (MAE) for each model, both with and without the incorporation of AMRC.211

Table 2: Performance Comparison of Time Series Forecasting Models With and Without AMRC. In
the experimental results, we highlighted in bold the parts where the AMRC model improved by more
than 0.05 in MSE and MAE metrics compared to the baseline model. The detailed hyperparameter
configurations for each model can be found in Appendix C. Full results are listed in Appendix E

Model ETTh1 ETTh2 ETTm1 ETTm2 Solar-Energy Electricity Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

SOFTS Original 0.408 0.414 0.326 0.359 0.484 0.434 0.210 0.285 0.293 0.314 0.169 0.255 0.205 0.234
AMRC 0.389 0.393 0.311 0.362 0.475 0.423 0.198 0.265 0.290 0.309 0.162 0.244 0.196 0.220

iTransformer Original 0.413 0.415 0.329 0.362 0.517 0.448 0.213 0.290 0.395 0.352 0.176 0.260 0.209 0.237
AMRC 0.402 0.399 0.324 0.356 0.502 0.447 0.211 0.280 0.392 0.342 0.163 0.239 0.201 0.221

TimeMixer Original 0.393 0.408 0.318 0.355 0.466 0.429 0.209 0.285 0.288 0.317 0.194 0.279 0.197 0.237
AMRC 0.388 0.401 0.316 0.339 0.447 0.405 0.204 0.269 0.284 0.317 0.188 0.277 0.186 0.228

PatchTST Original 0.424 0.424 0.327 0.358 0.461 0.422 0.211 0.287 0.374 0.382 0.211 0.283 0.215 0.280
AMRC 0.411 0.415 0.319 0.356 0.456 0.413 0.196 0.271 0.361 0.376 0.207 0.285 0.210 0.264

TSMixer Original 0.402 0.412 0.324 0.357 0.440 0.413 0.201 0.279 0.288 0.314 0.172 0.258 0.222 0.288
AMRC 0.386 0.397 0.319 0.340 0.432 0.412 0.196 0.257 0.280 0.313 0.169 0.247 0.212 0.281

Consistent Performance Gains. Across all models and datasets, our method consistently yields212

performance improvements. For example, the MSE of the SOFTS model decreases from 0.408213

to 0.389 on the ETTh1 dataset. Similar trends are observed in iTransformer, where the MSE on214

Electricity drops from 0.176 to 0.163. The enhancements demonstrate that AMRC effectively215

mitigates redundant or noisy temporal segments, thereby improving prediction stability and accuracy.216

Architecture-Agnostic Effectiveness. AMRC delivers significant performance gains not only on217

Transformer-based architectures such as iTransformer and PatchTST, but also on MLP-based models218

including TimeMixer, SOFTS, and TSMixer. For instance, on the ETTm2 dataset, the MSE of219

PatchTST model decreases from 0.211 to 0.196 (a reduction of approximately 7.11%), while the220

MSE of SOFTS model drops from 0.210 to 0.198 (approximately 5.71% reduction). These results221

demonstrate the strong architecture-agnostic generalization ability of AMRC, highlighting its broad222

applicability across a wide range of time series forecasting models.223
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Table 3: Ablation Study Results on Different Model Components
Model ETTh1 ETTh2 Solar-Energy Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE

SOFTS
AML only 0.401 0.405 0.322 0.358 0.297 0.309 0.192 0.228
ESP only 0.393 0.398 0.318 0.351 0.295 0.318 0.208 0.241
AMRC 0.389 0.393 0.311 0.362 0.290 0.309 0.196 0.220

iTransformer
AML only 0.410 0.413 0.328 0.363 0.398 0.347 0.205 0.230
ESP only 0.407 0.408 0.326 0.359 0.402 0.351 0.210 0.248
AMRC 0.402 0.399 0.324 0.356 0.392 0.342 0.201 0.221

TimeMixer
AML only 0.395 0.412 0.319 0.351 0.287 0.319 0.189 0.232
ESP only 0.391 0.406 0.317 0.347 0.293 0.325 0.202 0.248
AMRC 0.388 0.401 0.316 0.339 0.284 0.317 0.186 0.228

PatchTST
AML only 0.419 0.420 0.325 0.361 0.369 0.379 0.214 0.274
ESP only 0.417 0.418 0.323 0.357 0.375 0.384 0.217 0.281
AMRC 0.411 0.415 0.319 0.356 0.361 0.376 0.210 0.264

TSMixer
AML only 0.396 0.404 0.324 0.356 0.285 0.317 0.216 0.283
ESP only 0.390 0.399 0.322 0.352 0.291 0.323 0.224 0.292
AMRC 0.386 0.397 0.319 0.340 0.280 0.313 0.212 0.281

Generalization on Low-Channel Datasets. On datasets with fewer input channels (ETTh1, ETTh2,224

ETTm1, ETTm2), AMRC effectively enhances model performance. For instance, on ETTm1, the225

MSE of iTransformer decreases from 0.517 to 0.502, and that of TSMixer drops from 0.440 to 0.432.226

These results demonstrate AMRC’s ability to mitigate overfitting and improve prediction accuracy in227

low-dimensional time series forecasting tasks.228

Robustness on High-Channel Datasets. For high-dimensional datasets such as Weather (21 chan-229

nels) and Solar-Energy (137 channels) see in Appendix F, AMRC consistently improves robustness230

by reducing the impact of signal noise and inter-channel redundancy. On the Weather dataset,231

TimeMixer’s MSE decreases from 0.197 to 0.186 and MAE from 0.237 to 0.228, while iTransformer232

sees an MAE drop from 0.237 to 0.221. On Solar-Energy, PatchTST’s MSE drops from 0.374 to233

0.361, and SOFTS sees a slight MAE reduction from 0.314 to 0.309. These enhancements highlight234

AMRC’s effectiveness in managing complexity in multivariate time series with high channel counts.235

Generalizable Training Framework. The consistent performance improvements observed across all236

models validate the strong scalability and integrability of AMRC. As a constraint-based optimization237

strategy, AMRC does not rely on any specific model architecture, making it highly generalizable. It238

serves as a versatile training framework for enhancing both the efficiency and accuracy of time series239

forecasting models.240

4.3 Ablation Study241

Setup. We evaluate ablation variants on four diverse datasets: ETTh1 and ETTh2, representing242

hourly electricity load with varying degrees of seasonality; Solar-Energy, which exhibits weather-243

driven variability and periodicity; and Weather, a multivariate meteorological dataset with complex244

inter-variable dependencies. We adopt a fixed input horizon following standard benchmarks.245

Evaluation protocol. For each dataset, we apply the ablation study to five baseline models SOFTS,246

iTransformer, TimeMixer, PatchTST, and TSMixer under four configurations:1) baseline + AML, 2)247

baseline + ESP, and 3) baseline + both AML and ESP. This design allows us to assess the standalone248

effectiveness of each module as well as their combined synergy.249

Findings. We evaluate the individual and joint effects of the AML and ESP components using five250

representative forecasting architectures across four datasets. As shown in Table 3, both components251

contribute measurable performance gains in isolation, while their combination AMRC consistently252

leads to the best forecasting accuracy in terms of MSE and MAE. AML provides stronger improve-253

ments across most settings, supporting its role in suppressing redundant prefixes during training.254

ESP, while often delivering smaller standalone gains, remains beneficial by promoting geometric255

alignment between embedding and output spaces. Together, these findings demonstrate that each256

component addresses a distinct source of generalization error.257

Component impact across architectures. The benefits of AML and ESP are consistently ob-258

served across all backbone models, regardless of architectural differences. For instance, models259
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with strong expressiveness, such as iTransformer and TimeMixer, benefit significantly from AML,260

achieving notable MSE reductions on datasets like Weather and ETTh2. Even architectures with-261

out attention mechanisms, such as SOFTS and TSMixer, exhibit consistent gains, highlighting the262

broad applicability of adaptive prefix masking. In contrast, the improvements from ESP are often263

more dataset-dependent, being particularly effective on high-dimensional multivariate inputs where264

representation alignment plays a critical role. For example, ESP yields non-trivial reductions in MAE265

on Weather, where multiple variables evolve under shared dynamics. Notably, we observe relatively266

smaller improvements on the Solar-Energy dataset for transformer-based models such as PatchTST267

and iTransformer, which may be attributed to their reliance on longer input sequences for stable268

attention computation.269

Complementarity and synergy. The AMRC configuration, which jointly applies AML and ESP,270

consistently outperforms its ablated variants across all benchmarks. The performance improvement271

from combining both components generally exceeds the stronger of the two individual effects,272

indicating synergistic interaction. This complementarity can be attributed to their distinct operational273

scopes: AML operates on the input level by learning to suppress non-informative temporal segments,274

while ESP regularizes the latent space to align representations across semantically related inputs.275

As a result, AMRC improves both the quality of features learned from the data and the consistency276

of their usage in prediction. The robust gains observed across datasets and architectures suggest277

that jointly addressing input redundancy and representation inconsistency is critical for improving278

generalization in time series forecasting.

Table 4: AMRC Effectiveness Across Datasets and Models. Ratio is the percentage of training
samples with reduced MSE under prefix masking. Ratio* is the same metric after training with
AMRC, reflecting improved robustness. Results are from the ablation setting with input length set to
48. Detailed results are provided in Appendix E.

Model ETTh1 ETTh2 Solar-Energy Weather

Metric Ratio Ratio* Ratio Ratio* Ratio Ratio* Ratio Ratio*

SOFTS 64% 57.33% 28.72% 20.28% 41.58% 33.49% 54.93% 47.12%
iTransformer 60.07% 49.95% 32.16% 23.28% 68.43% 63.21% 80.26% 70.29%
TimeMixer 58.04% 46.29% 44.52% 34.17% 36.25% 27.90% 66.13% 52.28%
PatchTST 65.51% 51.63% 42.46% 26.19% 51.66% 47.64% 42.43% 30.78%
TSMixer 59.19% 46.62% 42.13% 27.98% 40.12% 28.36% 70.88% 58.23%

279

Effectiveness of AMRC in Reducing Redundant Features We evaluate the model’s robustness to280

redundant input by computing the proportion of training samples with improved MSE under prefix281

masking Ratio and compare it to the value after applying AMRC Ratio*. As shown in Table 4,282

AMRC consistently improves or maintains this ratio, indicating its effectiveness in suppressing the283

impact of redundant temporal information.284

5 Conclusion285

This study pioneers the investigation into the negative effects of redundant feature learning in time286

series forecasting and introduces AMRC, a plug-and-play solution that suppresses such learning287

without requiring architectural modifications. Unlike prior work focused on enhancing predictive288

features, AMRC improves accuracy by reducing reliance on redundant features while maintaining289

model flexibility. Its key advantages include: 1) seamless integration with existing models, 2) effective290

suppression of feature redundancy, and 3) strong generalization performance across benchmark tests.291

By addressing the long-overlooked issue of redundant learning, this research provides a novel and292

practical methodology for optimizing forecasting models.293

References294

[1] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational295

information bottleneck, 2019. URL https://arxiv.org/abs/1612.00410.296

9

https://arxiv.org/abs/1612.00410


[2] Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin297

Yang, and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for298

time series forecasting. arXiv preprint arXiv:2402.05956, 2024.299

[3] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.300

Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint301

arXiv:1901.02860, 2019.302

[4] Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-303

term forecasting with tide: Time-series dense encoder, 2024. URL https://arxiv.org/abs/304

2304.08424.305

[5] Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning306

Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens. arXiv preprint307

arXiv:2307.02486, 2023.308

[6] Alexandre Drouin, Étienne Marcotte, and Nicolas Chapados. Tactis: Transformer-attentional309

copulas for time series. In International Conference on Machine Learning, pages 5447–5493.310

PMLR, 2022.311

[7] Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.312

Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In Proceedings313

of the 29th ACM SIGKDD conference on knowledge discovery and data mining, pages 459–469,314

2023.315

[8] Lu Han, Xu-Yang Chen, Han-Jia Ye, and De-Chuan Zhan. Softs: Efficient multivariate time316

series forecasting with series-core fusion. arXiv preprint arXiv:2404.14197, 2024.317

[9] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks318

for time series forecasting: Current status and future directions. International Journal of319

Forecasting, 37(1):388–427, 2021.320

[10] Shizhe Hu, Zhengzheng Lou, Xiaoqiang Yan, and Yangdong Ye. A survey on information321

bottleneck. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.322

[11] Nataliia Kashpruk, Cezary Piskor-Ignatowicz, and Jerzy Baranowski. Time series prediction in323

industry 4.0: a comprehensive review and prospects for future advancements. Applied Sciences,324

13(22):12374, 2023.325

[12] Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosoph-326

ical Transactions of the Royal Society A, 379(2194):20200209, 2021.327

[13] Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang.328

Segrnn: Segment recurrent neural network for long-term time series forecasting. arXiv preprint329

arXiv:2308.11200, 2023.330

[14] Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.331

itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint332

arXiv:2310.06625, 2023.333

[15] Chao Ma, Yikai Hou, Xiang Li, Yinggang Sun, and Haining Yu. Long input sequence network334

for long time series forecasting. arXiv preprint arXiv:2407.15869, 2024.335

[16] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is336

worth 64 words: Long-term forecasting with transformers. In International Conference on337

Learning Representations, 2023.338

[17] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis339

expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,340

2019.341

[18] Asiye K Ozcanli, Fatma Yaprakdal, and Mustafa Baysal. Deep learning methods and applications342

for electrical power systems: A comprehensive review. International Journal of Energy343

Research, 44(9):7136–7157, 2020.344

[19] Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K345

Barrow, Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J Bessa, Jakub Bijak, John E Boylan,346

et al. Forecasting: theory and practice. International Journal of forecasting, 38(3):705–871,347

2022.348

10

https://arxiv.org/abs/2304.08424
https://arxiv.org/abs/2304.08424
https://arxiv.org/abs/2304.08424


[20] Yankun Ren, Longfei Li, Xinxing Yang, and Jun Zhou. Autotransformer: Automatic transformer349

architecture design for time series classification. In Pacific-Asia Conference on Knowledge350

Discovery and Data Mining, pages 143–155. Springer, 2022.351

[21] Koushik Roy, Abtahi Ishmam, and Kazi Abu Taher. Demand forecasting in smart grid using long352

short-term memory. In 2021 International Conference on Automation, Control and Mechatronics353

for Industry 4.0 (ACMI), pages 1–5. IEEE, 2021.354

[22] Zezhi Shao, Fei Wang, Yongjun Xu, Wei Wei, Chengqing Yu, Zhao Zhang, Di Yao, Tao355

Sun, Guangyin Jin, Xin Cao, et al. Exploring progress in multivariate time series forecasting:356

Comprehensive benchmarking and heterogeneity analysis. IEEE Transactions on Knowledge357

and Data Engineering, 2024.358

[23] Noam Slonim and Naftali Tishby. Agglomerative information bottleneck. Advances in neural359

information processing systems, 12, 1999.360

[24] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In361

2015 ieee information theory workshop (itw), pages 1–5. Ieee, 2015.362

[25] Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method,363

2000. URL https://arxiv.org/abs/physics/0004057.364

[26] Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,365

and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. arXiv366

preprint arXiv:2405.14616, 2024.367

[27] Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. arXiv368

preprint arXiv:2307.03756, 2023.369

[28] Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Ning An, Defu Lian,370

Longbing Cao, and Zhendong Niu. Frequency-domain mlps are more effective learners in time371

series forecasting. Advances in Neural Information Processing Systems, 36:76656–76679, 2023.372

[29] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,373

Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird:374

Transformers for longer sequences. Advances in neural information processing systems, 33:375

17283–17297, 2020.376

[30] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series377

forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages378

11121–11128, 2023.379

[31] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series380

forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages381

11121–11128, 2023.382

[32] Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency383

for multivariate time series forecasting. In The eleventh international conference on learning384

representations, 2023.385

[33] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai386

Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In387

Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115,388

2021.389

[34] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:390

Frequency enhanced decomposed transformer for long-term series forecasting. In International391

conference on machine learning, pages 27268–27286. PMLR, 2022.392

11

https://arxiv.org/abs/physics/0004057


NeurIPS Paper Checklist465

The checklist is designed to encourage best practices for responsible machine learning research,466

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove467

the checklist: The papers not including the checklist will be desk rejected. The checklist should468

follow the references and follow the (optional) supplemental material. The checklist does NOT count469

towards the page limit.470

Please read the checklist guidelines carefully for information on how to answer these questions. For471

each question in the checklist:472

• You should answer [Yes] , [No] , or [NA] .473

• [NA] means either that the question is Not Applicable for that particular paper or the474

relevant information is Not Available.475

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).476

The checklist answers are an integral part of your paper submission. They are visible to the477

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it478

(after eventual revisions) with the final version of your paper, and its final version will be published479

with the paper.480

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.481

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a482

proper justification is given (e.g., "error bars are not reported because it would be too computationally483

expensive" or "we were unable to find the license for the dataset we used"). In general, answering484

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we485

acknowledge that the true answer is often more nuanced, so please just use your best judgment and486

write a justification to elaborate. All supporting evidence can appear either in the main paper or the487

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification488

please point to the section(s) where related material for the question can be found.489

IMPORTANT, please:490

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",491

• Keep the checklist subsection headings, questions/answers and guidelines below.492

• Do not modify the questions and only use the provided macros for your answers.493

1. Claims494

Question: Do the main claims made in the abstract and introduction accurately reflect the495

paper’s contributions and scope?496

Answer: [Yes]497

Justification: The main claims are clearly written in the abstract and introduction.498

Guidelines:499

• The answer NA means that the abstract and introduction do not include the claims500

made in the paper.501

• The abstract and/or introduction should clearly state the claims made, including the502

contributions made in the paper and important assumptions and limitations. A No or503

NA answer to this question will not be perceived well by the reviewers.504

• The claims made should match theoretical and experimental results, and reflect how505

much the results can be expected to generalize to other settings.506

• It is fine to include aspirational goals as motivation as long as it is clear that these goals507

are not attained by the paper.508

2. Limitations509

Question: Does the paper discuss the limitations of the work performed by the authors?510

Answer: [Yes]511

Justification: We discussed the limitation of our method in Appendix A.512
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Guidelines:513

• The answer NA means that the paper has no limitation while the answer No means that514

the paper has limitations, but those are not discussed in the paper.515

• The authors are encouraged to create a separate "Limitations" section in their paper.516

• The paper should point out any strong assumptions and how robust the results are to517

violations of these assumptions (e.g., independence assumptions, noiseless settings,518

model well-specification, asymptotic approximations only holding locally). The authors519

should reflect on how these assumptions might be violated in practice and what the520

implications would be.521

• The authors should reflect on the scope of the claims made, e.g., if the approach was522

only tested on a few datasets or with a few runs. In general, empirical results often523

depend on implicit assumptions, which should be articulated.524

• The authors should reflect on the factors that influence the performance of the approach.525

For example, a facial recognition algorithm may perform poorly when image resolution526

is low or images are taken in low lighting. Or a speech-to-text system might not be527

used reliably to provide closed captions for online lectures because it fails to handle528

technical jargon.529

• The authors should discuss the computational efficiency of the proposed algorithms530

and how they scale with dataset size.531

• If applicable, the authors should discuss possible limitations of their approach to532

address problems of privacy and fairness.533

• While the authors might fear that complete honesty about limitations might be used by534

reviewers as grounds for rejection, a worse outcome might be that reviewers discover535

limitations that aren’t acknowledged in the paper. The authors should use their best536

judgment and recognize that individual actions in favor of transparency play an impor-537

tant role in developing norms that preserve the integrity of the community. Reviewers538

will be specifically instructed to not penalize honesty concerning limitations.539

3. Theory assumptions and proofs540

Question: For each theoretical result, does the paper provide the full set of assumptions and541

a complete (and correct) proof?542

Answer: [Yes]543

Justification: All the theories and hypotheses we proposed are supported by experimental544

and mathematical derivations.545

Guidelines:546

• The answer NA means that the paper does not include theoretical results.547

• All the theorems, formulas, and proofs in the paper should be numbered and cross-548

referenced.549

• All assumptions should be clearly stated or referenced in the statement of any theorems.550

• The proofs can either appear in the main paper or the supplemental material, but if551

they appear in the supplemental material, the authors are encouraged to provide a short552

proof sketch to provide intuition.553

• Inversely, any informal proof provided in the core of the paper should be complemented554

by formal proofs provided in appendix or supplemental material.555

• Theorems and Lemmas that the proof relies upon should be properly referenced.556

4. Experimental result reproducibility557

Question: Does the paper fully disclose all the information needed to reproduce the main ex-558

perimental results of the paper to the extent that it affects the main claims and/or conclusions559

of the paper (regardless of whether the code and data are provided or not)?560

Answer: [Yes]561

Justification: We provide detailed descriptions of the hyperparameters in the paper and562

appendices, along with an anonymous link to the experimental demo in the abstract.563

Guidelines:564

• The answer NA means that the paper does not include experiments.565
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• If the paper includes experiments, a No answer to this question will not be perceived566

well by the reviewers: Making the paper reproducible is important, regardless of567

whether the code and data are provided or not.568

• If the contribution is a dataset and/or model, the authors should describe the steps taken569

to make their results reproducible or verifiable.570

• Depending on the contribution, reproducibility can be accomplished in various ways.571

For example, if the contribution is a novel architecture, describing the architecture fully572

might suffice, or if the contribution is a specific model and empirical evaluation, it may573

be necessary to either make it possible for others to replicate the model with the same574

dataset, or provide access to the model. In general. releasing code and data is often575

one good way to accomplish this, but reproducibility can also be provided via detailed576

instructions for how to replicate the results, access to a hosted model (e.g., in the case577

of a large language model), releasing of a model checkpoint, or other means that are578

appropriate to the research performed.579

• While NeurIPS does not require releasing code, the conference does require all submis-580

sions to provide some reasonable avenue for reproducibility, which may depend on the581

nature of the contribution. For example582

(a) If the contribution is primarily a new algorithm, the paper should make it clear how583

to reproduce that algorithm.584

(b) If the contribution is primarily a new model architecture, the paper should describe585

the architecture clearly and fully.586

(c) If the contribution is a new model (e.g., a large language model), then there should587

either be a way to access this model for reproducing the results or a way to reproduce588

the model (e.g., with an open-source dataset or instructions for how to construct589

the dataset).590

(d) We recognize that reproducibility may be tricky in some cases, in which case591

authors are welcome to describe the particular way they provide for reproducibility.592

In the case of closed-source models, it may be that access to the model is limited in593

some way (e.g., to registered users), but it should be possible for other researchers594

to have some path to reproducing or verifying the results.595

5. Open access to data and code596

Question: Does the paper provide open access to the data and code, with sufficient instruc-597

tions to faithfully reproduce the main experimental results, as described in supplemental598

material?599

Answer: [Yes]600

Justification: We have included a link to an anonymous demo of our experiments in the601

abstract.602

Guidelines:603

• The answer NA means that paper does not include experiments requiring code.604

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/605

public/guides/CodeSubmissionPolicy) for more details.606

• While we encourage the release of code and data, we understand that this might not be607

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not608

including code, unless this is central to the contribution (e.g., for a new open-source609

benchmark).610

• The instructions should contain the exact command and environment needed to run to611

reproduce the results. See the NeurIPS code and data submission guidelines (https:612

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.613

• The authors should provide instructions on data access and preparation, including how614

to access the raw data, preprocessed data, intermediate data, and generated data, etc.615

• The authors should provide scripts to reproduce all experimental results for the new616

proposed method and baselines. If only a subset of experiments are reproducible, they617

should state which ones are omitted from the script and why.618

• At submission time, to preserve anonymity, the authors should release anonymized619

versions (if applicable).620
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• Providing as much information as possible in supplemental material (appended to the621

paper) is recommended, but including URLs to data and code is permitted.622

6. Experimental setting/details623

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-624

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the625

results?626

Answer: [Yes]627

Justification: We provide the experimental setup details in both the main text and appendices.628

Guidelines:629

• The answer NA means that the paper does not include experiments.630

• The experimental setting should be presented in the core of the paper to a level of detail631

that is necessary to appreciate the results and make sense of them.632

• The full details can be provided either with the code, in appendix, or as supplemental633

material.634

7. Experiment statistical significance635

Question: Does the paper report error bars suitably and correctly defined or other appropriate636

information about the statistical significance of the experiments?637

Answer: [Yes]638

Justification: The margin of error is reported in the appendix.639

Guidelines:640

• The answer NA means that the paper does not include experiments.641

• The authors should answer "Yes" if the results are accompanied by error bars, confi-642

dence intervals, or statistical significance tests, at least for the experiments that support643

the main claims of the paper.644

• The factors of variability that the error bars are capturing should be clearly stated (for645

example, train/test split, initialization, random drawing of some parameter, or overall646

run with given experimental conditions).647

• The method for calculating the error bars should be explained (closed form formula,648

call to a library function, bootstrap, etc.)649

• The assumptions made should be given (e.g., Normally distributed errors).650

• It should be clear whether the error bar is the standard deviation or the standard error651

of the mean.652

• It is OK to report 1-sigma error bars, but one should state it. The authors should653

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis654

of Normality of errors is not verified.655

• For asymmetric distributions, the authors should be careful not to show in tables or656

figures symmetric error bars that would yield results that are out of range (e.g. negative657

error rates).658

• If error bars are reported in tables or plots, The authors should explain in the text how659

they were calculated and reference the corresponding figures or tables in the text.660

8. Experiments compute resources661

Question: For each experiment, does the paper provide sufficient information on the com-662

puter resources (type of compute workers, memory, time of execution) needed to reproduce663

the experiments?664

Answer: [Yes]665

Justification: We provide sufficient computational resource details for each experiment in666

both the main text and appendices.667

Guidelines:668

• The answer NA means that the paper does not include experiments.669

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,670

or cloud provider, including relevant memory and storage.671
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• The paper should provide the amount of compute required for each of the individual672

experimental runs as well as estimate the total compute.673

• The paper should disclose whether the full research project required more compute674

than the experiments reported in the paper (e.g., preliminary or failed experiments that675

didn’t make it into the paper).676

9. Code of ethics677

Question: Does the research conducted in the paper conform, in every respect, with the678

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?679

Answer: [Yes]680

Justification: Our methodology and implementation fully adhere to the ethical code standards681

set forth by NeurIPS.682

Guidelines:683

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.684

• If the authors answer No, they should explain the special circumstances that require a685

deviation from the Code of Ethics.686

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-687

eration due to laws or regulations in their jurisdiction).688

10. Broader impacts689

Question: Does the paper discuss both potential positive societal impacts and negative690

societal impacts of the work performed?691

Answer: [NA]692

Justification: We have discussed the broader impact of time series forecasting in both abstract693

and introduction.694

Guidelines:695

• The answer NA means that there is no societal impact of the work performed.696

• If the authors answer NA or No, they should explain why their work has no societal697

impact or why the paper does not address societal impact.698

• Examples of negative societal impacts include potential malicious or unintended uses699

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations700

(e.g., deployment of technologies that could make decisions that unfairly impact specific701

groups), privacy considerations, and security considerations.702

• The conference expects that many papers will be foundational research and not tied703

to particular applications, let alone deployments. However, if there is a direct path to704

any negative applications, the authors should point it out. For example, it is legitimate705

to point out that an improvement in the quality of generative models could be used to706

generate deepfakes for disinformation. On the other hand, it is not needed to point out707

that a generic algorithm for optimizing neural networks could enable people to train708

models that generate Deepfakes faster.709

• The authors should consider possible harms that could arise when the technology is710

being used as intended and functioning correctly, harms that could arise when the711

technology is being used as intended but gives incorrect results, and harms following712

from (intentional or unintentional) misuse of the technology.713

• If there are negative societal impacts, the authors could also discuss possible mitigation714

strategies (e.g., gated release of models, providing defenses in addition to attacks,715

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from716

feedback over time, improving the efficiency and accessibility of ML).717

11. Safeguards718

Question: Does the paper describe safeguards that have been put in place for responsible719

release of data or models that have a high risk for misuse (e.g., pretrained language models,720

image generators, or scraped datasets)?721

Answer: [No]722

Justification: This paper does not have this risk.723
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Guidelines:724

• The answer NA means that the paper poses no such risks.725

• Released models that have a high risk for misuse or dual-use should be released with726

necessary safeguards to allow for controlled use of the model, for example by requiring727

that users adhere to usage guidelines or restrictions to access the model or implementing728

safety filters.729

• Datasets that have been scraped from the Internet could pose safety risks. The authors730

should describe how they avoided releasing unsafe images.731

• We recognize that providing effective safeguards is challenging, and many papers do732

not require this, but we encourage authors to take this into account and make a best733

faith effort.734

12. Licenses for existing assets735

Question: Are the creators or original owners of assets (e.g., code, data, models), used in736

the paper, properly credited and are the license and terms of use explicitly mentioned and737

properly respected?738

Answer: [Yes]739

Justification: We included it in implementation details and appendix.740

Guidelines:741

• The answer NA means that the paper does not use existing assets.742

• The authors should cite the original paper that produced the code package or dataset.743

• The authors should state which version of the asset is used and, if possible, include a744

URL.745

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.746

• For scraped data from a particular source (e.g., website), the copyright and terms of747

service of that source should be provided.748

• If assets are released, the license, copyright information, and terms of use in the749

package should be provided. For popular datasets, paperswithcode.com/datasets750

has curated licenses for some datasets. Their licensing guide can help determine the751

license of a dataset.752

• For existing datasets that are re-packaged, both the original license and the license of753

the derived asset (if it has changed) should be provided.754

• If this information is not available online, the authors are encouraged to reach out to755

the asset’s creators.756

13. New assets757

Question: Are new assets introduced in the paper well documented and is the documentation758

provided alongside the assets?759

Answer: [NA]760

Justification: N/A.761

Guidelines:762

• The answer NA means that the paper does not release new assets.763

• Researchers should communicate the details of the dataset/code/model as part of their764

submissions via structured templates. This includes details about training, license,765

limitations, etc.766

• The paper should discuss whether and how consent was obtained from people whose767

asset is used.768

• At submission time, remember to anonymize your assets (if applicable). You can either769

create an anonymized URL or include an anonymized zip file.770

14. Crowdsourcing and research with human subjects771

Question: For crowdsourcing experiments and research with human subjects, does the paper772

include the full text of instructions given to participants and screenshots, if applicable, as773

well as details about compensation (if any)?774
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Answer: [NA]775

Justification: N/A.776

Guidelines:777

• The answer NA means that the paper does not involve crowdsourcing nor research with778

human subjects.779

• Including this information in the supplemental material is fine, but if the main contribu-780

tion of the paper involves human subjects, then as much detail as possible should be781

included in the main paper.782

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,783

or other labor should be paid at least the minimum wage in the country of the data784

collector.785

15. Institutional review board (IRB) approvals or equivalent for research with human786

subjects787

Question: Does the paper describe potential risks incurred by study participants, whether788

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)789

approvals (or an equivalent approval/review based on the requirements of your country or790

institution) were obtained?791

Answer: [NA]792

Justification: N/A.793

Guidelines:794

• The answer NA means that the paper does not involve crowdsourcing nor research with795

human subjects.796

• Depending on the country in which research is conducted, IRB approval (or equivalent)797

may be required for any human subjects research. If you obtained IRB approval, you798

should clearly state this in the paper.799

• We recognize that the procedures for this may vary significantly between institutions800

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the801

guidelines for their institution.802

• For initial submissions, do not include any information that would break anonymity (if803

applicable), such as the institution conducting the review.804

16. Declaration of LLM usage805

Question: Does the paper describe the usage of LLMs if it is an important, original, or806

non-standard component of the core methods in this research? Note that if the LLM is used807

only for writing, editing, or formatting purposes and does not impact the core methodology,808

scientific rigorousness, or originality of the research, declaration is not required.809

Answer: [No]810

Justification: We did not use any large language models (LLMs) in this work.811

Guidelines:812

• The answer NA means that the core method development in this research does not813

involve LLMs as any important, original, or non-standard components.814

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)815

for what should or should not be described.816
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